特集 痛み治療 (ペインクリニック)の現況と展望

痛みのメカニズム

虎ノ門病院麻酔科 角田 俊信 東京大学大学院医学系研究科生体管理医学麻酔学 花岡 一雄

KEY WORDS

- ●侵害受容痛
- 神経因性疼痛 (neuropathic pain)
- ●侵害受容器
- ●発痛物質

Mechanisms of pain. Toshinobu Sumida(部長) Kazuo Hanaoka(教授)

医痛の分類

疼痛を発生様式により分類すると, 侵害受容痛(体性痛と内臟痛),神経因 性疼痛(侵害受容器を経由せず,神経 の障害による疼痛),心因性疼痛に分 けられる。また,急性痛,慢性痛(悪 性疾患に起因しない慢性痛,癌性疼痛) という分類もできる。臨床の患者では, 複数のメカニズムが合わさって単純に 分類できないことも多い。

1. 侵害受容痛

1)体性痛(somatic pain)

皮膚や深部組織の侵害受容器が活性 化されて生じる。さらに表面痛(superficial pain)と深部痛(deep pain)に分け る場合もある。

伝達される速度により分類すると、
一次痛(first pain)と二次痛(second pain)に分けられる。一次痛は、鋭い、
刺すような痛み(鋭痛:sharp pain)であり、痛みの局在が明確である。二次

痛は, 鈍い, 疼くような痛み(鈍痛: dull pain)であり, 痛みの局在が不明 確である。

2)内臓痛(visceral pain)

体性痛に比べて分布や性質がはっき りしないことが多い。内臓を支配する 自律神経と一緒に走行している求心線 維によって痛みインパルスが伝導され ると考えられる。内臓性求心線維と体 性求心線維が同一の脊髄後角ニューロ ンに収束しているために,関連痛(referred pain)が起こる。

神経因性疼痛(neuropathic pain)

末梢あるいは中枢神経系(脊髄・脳 幹・視床皮質など)の機能異常による 病的な疼痛である。締めつけ,焼きつ けるような持続性の痛みに加えて,間 欠的・発作的に強い痛みもある。知覚 鈍麻(dysesthesia),痛覚過敏(hyperalgesia),アロディニア(allodynia)な どの現象を伴うのが特徴である。 3. 心因性疼痛(psychogenic pain) 解剖学的,神経学的に説明のつかな い疼痛の場合に,心因性疼痛が疑われる。

Ⅱ. 疼痛の発生メカニズム

疼痛は受容器-神経伝導路-中枢という経路の,どこかに加わった刺激によりインパルスが発生し,中枢に伝えられると痛みとして知覚される。

1. 侵害受容器(nociceptor)

皮膚において痛覚を感じる部分は痛 点といい, 触点・圧点に比して密度が 大である。温度を感じる部分には、温 点と冷点とがある。冷点の数は温点の 数よりも多いが、約45℃以上になると 痛覚を感じ,非常に冷たい場合も痛覚 を感じる。痛覚も温度覚も自由神経終 末 (free nerve endings) が受容器と考 えられている。自由神経終末は互いに 絡まり,神経による支配領域も重複し ている。末梢組織に侵害刺激が加わる と,侵害受容器が興奮して痛みインパ ルスを生じる。受容器電位は樹状突起 の変形によって生じると考えられてお り,それが電気的に受容器細胞および 軸索に沿って伝わる。侵害受容器には, 侵害刺激にのみ反応する高閾値機械受 容器と,非侵害刺激にも反応し,侵害 刺激に対しては強度依存性に反応する ポリモーダル受容器とがある。高閾値 機械受容器はA ∂ 線維を伝わる一次痛 に関連し,繰り返し刺激で反応は減弱 し,刺激が終了すれば後発射を示さな い。ポリモーダル受容器は機械的な痛 み刺激だけでなく、熱刺激にも、化学 的刺激にも反応し、C線維を伝わる二 次痛に関連している。高閾値機械受容 器とは対照的に、侵害刺激を繰り返し

与えると反応性が増大して閾値の低下 がみられ,刺激中止後の後発射が長時 間持続する。

2. 内因性発痛物質

組織がさらに損傷されると、ブラジ キニン、ヒスタミン、セロトニン、プ ロスタグランジン、サブスタンスPな どの内因性発痛物質が放出され、炎症 による痛みが加わる。一次求心神経終 末が活性化された結果、脊髄後角では 侵害受容のメディエーター(後述)の放 出が行われる。一次求心神経終末の興 奮はまた、軸索反射により末梢にもメ ディエーターを放出し、血管に働いて 血漿の血管外漏出を引き起こす。浮腫 が形成され、痛みが周辺部へ広がる。 特に、二次痛に関与するポリモーダル 受容器の働きには、炎症性メディエー ターの関与が大きい。

Ⅲ. 痛みインパルスの伝達

痛みインパルスは、A δ 線維(伝導 速度11~15m/秒)とC線維(伝導速度1 ~2m/秒)により伝えられる。一次痛 には主にA δ 線維が、二次痛にはC線 維が関与している。深部痛は皮膚では C線維、深部組織ではA δ およびC線維 が関与している。

1. 上行性伝導路

脊髄神経領域では,侵害受容器の細 胞体は後根神経節に存在し,神経線維 の一方は自由神経終末として全身に分 布し,他方は後根を通って脊髄後角に ある二次求心性ニューロンとシナプス 結合する。一次求心神経終末の活性化 により脊髄後角では侵害受容のメディ エーター〔サブスタンスP,ニューロ キニン,カルシトニン遺伝子関連ペプ チド(CGRP)などの神経ペプチドや, グルタミン酸やアスパルギン酸などの 興奮性アミノ酸(excitatory amino acid; EAA)]の放出が行われ,二次求心性 ニューロンに興奮が伝達される。放散 の現象は,一次ニューロンからの入力 が脊髄後角において内部連結によって 連絡し合っていることにより生じる。

外側脊髄視床路は疼痛刺激(一次痛) を伝える最も重要な経路であり,脊髄 後角を出て対側の前側索を上向し,視 床後外腹側核(VPL),内包後脚を経て 大脳皮質体性感覚野に達する。二次痛 の場合も同様であるが,脊髄後角から 前脊髄視床路・脊髄網様体を通り,視 床髄板内核・視床下部を経て大脳皮質 に達する。顔面領域の疼痛は,三叉神 経に含まれる侵害受容線維が伝える。 三叉神経脊髄路核と延髄外側網様体を 経由して視床に送られる。

2. 脊髄の侵害受容ニューロン

脊髄後角の神経細胞群を分類する一 般的な方法は、興奮する刺激の種類に 基づいて電気生理学的差異によって分 類する方法である。低閾値機械的刺激 受容細胞(low threshold mechanoreceptive cell:LT細胞)は,軽い接触や圧 刺激といった弱い刺激で興奮し、特 に第Ⅳ層に多い。温度刺激受容細胞 (thermoreceptive cell)は, 第Ⅰ, Ⅲ, V層に存在し,運動刺激受容細胞 (movement detection cell) は主として 第VI層に存在する。特異的侵害刺激受 容細胞(nociceptor-specific cell:NS細 胞, またはhigh threshold mechanoreceptor: 高閾値機械的刺激受容細胞)は, 組織傷害を生じるような強い刺激によ り興奮する。広作動域神経細胞(widedynamic-range neuron:WDR細胞)は, 後角に最も普通にみられる細胞で,特 にN, V, VI層に存在する。高位の脳 中枢からの影響のもとに軽い接触, 圧, ピンチ,熱,化学物質といった強い刺 激にも弱い刺激にも反応する。侵害情 報を加工して知覚を識別するうえで, WDR神経細胞は決定的な機能を果た すと考えられている。

3. 神経伝達物質

多くの神経伝達物質のなかでも、グ ルタミン酸は哺乳類の中枢神経系にお ける主要な興奮性神経伝達物質である。 N-methyl-D-aspartic acid (NMDA) や AMPA/kainate (非NMDA)は、グルタ ミン酸受容体の代表的な作用薬であり, これらを用いてグルタミン酸受容体の サブタイプが分類されてきた。NMDA 受容体とAMPA/kainate受容体は、ど ちらもイオンチャネルの開閉に直接関 与する受容体 (ligand-gated ion channels型受容体)であるが、細胞内情報 伝達系を介して機能する代謝調節型 (metabotropic)受容体(G蛋白共役型受 容体: cAMP, cGMP, カルシウムな どのセカンドメッセンジャーを介す る)も存在する。

一方, 脳幹部における抑制性シナプ スは, γ - アミノ酪酸(γ -amino butyric acid; GABA)が伝達物質であ るといわれ, 脊髄ではグリシン(glycin)が伝達物質であるといわれている。

Ⅳ. 侵害受容の修飾

上行路はそれに結合する神経ネット ワークから信号の変調を受けて,疼痛 レベルが調節されている。

1. ゲートコントロール説

太い神経 (A β)からの刺激は細い線 維 (A δ , C)からの刺激を抑制するよ うに作用し、疼痛レベルを下げるよう に働く。逆に細い線維の興奮は、シナ プス前抑制が脱抑制される。怪我をし ている皮膚の周囲を撫でると痛みが和 らぐのは、A β 線維を刺激するためと 考えられる。

2. 下行性疼痛抑制系

脊髄では上位中枢からの影響下に侵 害受容は修飾される。一次求心線維か らの神経伝達物質の放出が阻害された り,脊髄後角細胞の活性化が阻害され たりすることによる。下行性疼痛抑制 系としては、ノルアドレナリン(NA) 神経系とセロトニン(5-HT)神経系が 知られている。

3.オピオイド受容体

モルヒネ様の薬理作用をもち、オピ オイド受容体に特異的に結合する物質 をオピオイドといい、内因性オピオイ ドペプチドとしては20種以上知られて いる。オピオイド受容体には μ, δ, κ 受容体があり、中脳中心灰白質、扁 桃核, 尾状核, 視床下部, 脊髄後角な どに広く分布している。オピオイド受 容体にアゴニストが結合すると、神経 伝達物質の遊離や放出が抑制され, 鎮 痛作用が発現される。オピオイド受容 体は、GTP結合蛋白質(guanosine triphosphate-binding protein, またはG 蛋白)と共役して、cAMP生成抑制、 Ca²⁺チャネル抑制, K⁺チャネル活性 化を起こす。

4. 神経系の可塑性

痛み刺激による痛覚過敏の形成に,

後角ニューロンのNMDA受容体, proteinkinase C(PKC), NOなどが関与し ていることが示されている。NMDA受 容体の拮抗薬やNOの産生阻害により, この痛覚過敏の形成は抑制されること が示されている。

V. 疼痛の評価

痛みの治療においては、その治療効 果を判断し、薬剤の増量や変更・追加 を行う必要がある。痛みの度合いを測 定する方法としては、患者の言葉で痛 みを表現するVRS (verbal rating score) や、10cmの直線上でどの程度の痛み かを示すVAS (visual analogue scale) や、患者の表情で痛みを評価するface scaleが臨床的には用いられる。

Ⅵ. 今後の展望

近年の分子生物学の発達は、 痛みの 研究を大きく進展させた。特に,痛覚 系におけるオピオイドの作用の解明に は、オピオイド受容体のクローニング が大きな役割を果たした。また, 1980 年代初めに発見されたc-fosの発現を 抑えた動物では、標的遺伝子の1つで あるdynorphinの転写が抑制されて痛 覚過敏を示す。痛みによるc-fos発現 は痛みを抑制する方向に働くことを示 唆している。痛みの主要な伝達物質で あるglutamateの受容体や神経伝達物 質としての一酸化窒素(NO)の発見な ども痛みの分子機構の解明を促してき た。しかし、これほど膨大な研究がな されているにもかかわらず, 痛みには まだまだ未解明な点が多いのも事実で ある。さらなる今後の発展が期待され る。

 角田俊信,花岡一雄:疼痛 I. 生理.花 岡一雄,真下節,福田和彦編,臨 床麻酔学全書(上巻).東京,真興交易 (株)医書出版部,131-145,2002